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Abstract—An instant-local similarity method is proposed to analyze the unsteady state Graetz problems.
Unsteady heat transfer for fully-developed laminar flow of power-law non-Newtonian fluids in the thermal
entrance region of pipes and plate slits, with viscous dissipation considered, is studied. For the unsteady
thermal entrance heat transfer problems, only large Graetz numbers (small normalized axial distance}
are concerned and the normalized time from transient up to steady state is of order 107" ; therefore, the
instant-local similarity approach gives results of high accuracy. The effects of the flow index, viscous
dissipation and Graetz number on the heat transfer rate are demonstrated with numerical solutions. The
corresponding steady-state Graetz problems are studied by the local similarity method whose solutions
agree very well with the extended Leveque solutions particularly for large Graetz number and Brinkman
number.

NOMENCLATURE

Brinkman number;

specific heat;

Graetz number, =@/(ax)} in pipe case and
=2HQ/(awx) in plate slit case;

heat transfer coefficient;

plate slit half-height;

thermal conductivity;

parameter of a power-law fluid;

i/n;

flow index of a power-law fluid;

local Nusselt number, =2hR/k in pipe case
and =2hH/k in plate slit case;

volumetric flow rate, =zR{u) in pipe case
or 2wH<{u) in pipe slit case;

radial coordinate in pipe;

pipe radius;

time ;

temperature of the fluid;

bulk temperature;

inlet fluid temperature;

inside surface temperature;

velocity in axial coordinate;

maximum velocity in the axial direction,
={uy (m+3)/(m+1) for pipe flow and
=<{uy {m+2)/{m+1) for plate slit flow;
average velocity in the axial direction;
width of the plate slit;

axial coordinate ;

normalized axial coordinate, =oax/(R%u,,,,)
in pipe case and =ax/(H?u,,,) in plate slit
case;

cross-slit coordinate;

normalized radial coordinate, =r/R; nor-
malized cross slit coordinate, =y/H;
Heaviside unit operator, =0 for t<0 and
=1 for t>0.

Greek symbols

o, thermal diffusivity;

L n&tAy

", transformed radial or cross-slit coordinate,
=(1-Y)/;

0, normalized temperature,
= (T = THT, — TJ);

1, normalized time, =at/R* for pipe flow and
=at/H? for plate slit flow;

& transformed axial coordinate, =(9X/2)'?;

o, density.

1. INTRODUCTION

THE CLASSICAL steady-state heat and mass transfer in
the entrance region of channels with fully-developed
laminar flow is well known as the Graetz problem. The
eigenfunction expansion method is used extensively
for the study of this problem. Recently, it is shown that
the extended Leveque method [1-6] is useful for large
Graetz number which corresponds to small normal-
ized axial distance. Therefore, the extended Leveque
solutions are the supplemental solutions of the eigen-
function solutions which require less eigenfunctions
for small Graetz number.

The unsteady Graetz problems were analyzed by
Sparrow and Siegel [7, 8] using the methods of
characteristics and finite difference. Siegel [9] treated
the same problem in the downstream region using
eigenfunction expansion method. Only Newtonian
fluids without viscous dissipation are considered in the
previous analyses. However, in the design of the
control systems of heat transfer devices in organic-
cooled nuclear reactors, non-Newtonian fluids are
concerned with and viscous dissipation is significant.

In this paper, the unsteady state Graetz problems for
the heat transfer in the thermal entrance region for
fully-developed laminar flow of power-law non-
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Newtonian fluids in pipes and plate slits with step
change in surface temperature are studied by a new
method called instant-local similarity method pro-
posed by the authors. The new method uses the concept
of the extended Leveque method by restricting the
solutions to large Graetz number and converting the
energy equations to boundary layer type. The com-
parison of the local similarity solution with the
extended Leveque solution for the steady Graetz
problems in pipes is given first.

2. GOVERNING EQUATIONS

The unsteady-state energy equation in the thermal
entrance region for fully-developed laminar flow in a
pipe of power-law fluids with constant physical
properties is described by the following equation

du n—l(g—l{ 2
dr

dr
£y

r m+1 1
u= umax[l e (E) ‘]s m = ;! (2)

The last term of equation (1) denotes viscous dissi-
pation, and » is the flow index of the power-law non-
Newtonian fluids. Conduction and dispersion in the
axial direction have been neglected. The initial and
boundary conditions are

o, ‘3ka5(,57>+,<
Per ot ppuﬁx-rﬁr o

where

T(x, r.0)= T, (3)

TO,r.t)= Ty 4)
oT
—x.0,)=0 (5)
aor

T(x. R, t) = To+(T,—To) 1{1) (6)

where 1(r) is the Heaviside unit operator,

Lt>0
o = {0 ZO. @

Equations (3) and (4) show that the initial temperature
of the fluid in the pipe and the entrance fluid tempera-
ture are both at a constant temperature T,. Equation
{6) denotes that the pipe wall has a constant wall
temperature T for time t > 0.

Defining the following dimensionless variables and
groups

t= 3 (8)
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KRZ (u n+t
— CRB max
Br = tmt U T T\ R)
equations {1)-(6) become
00 e 12 00
il 1_ m+ 1 _____=7__( i ) m+ 1
o T e = yarl Yoy ) H BY
9
X, Y. =1 (10)
00, Y, 1)=1 (b
00
E?(X’ 0,1)=0 (12)
X, 1I,u=0 (13)

Equations (9)—(13) form a linear partial differential
equation system whose exact solution is very difficult
to obtain. Therefore, we are trying to find the approx-
imate solutions for various limiting cases. One of the
limiting cases is the steady state solution for large
Graetz number. Leveque solution [ 10] which assumes
a linear velocity profile with respect to normal distance
from the pipe wall is well known. The Leveque solution
has been extended by a number of authors [1-6].
Basically, in the extended Leveque method the energy
equation system is converted to a boundary-layer type
by replacing the boundary condition at the center of
the pipe with the boundary condition outside the
thermal boundary layer. Therefore, local similarity
method for the boundary layer heat transfer [11-14]
can be applied to obtain a solution for large Graetz
number. It is expected that the extended Leveque
solution agrees with the local similarity solution. For
the unsteady-state problem, an instant-local similarity
method is proposed to find the approximate solution
for small normalized time and large Graetz number.
First, a coordinate transformation is used to change
the independent variables (X, Y, ) of @ into (&, n, 7).

That is
9X 1/3
X ={—
¢ (2)

1-Y
"{-‘:'_'_‘

14
z (14)

T 7

where & is the transformed axial distance and 7 is the
transformed normal distance from the wall. Applying
equations (14), equations (9), (10) and (13) become,
respectively

2O 3 e
{Wanz —{—em =S ==t T
. ,00

B (1 =y

3 m+ 1 @
=5 l-a-ar5 (15)

0K 70 =1 (16)
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FiG. 1. Comparison of steady-state heat transfer for pipe flow, n = 1.

¢ 0,1)=0 (17

Since we are trying to find approximate solutions in
the thermal entrance region for large Graetz number,
the heat transfer problem becomes boundary-layer
type. Instead of using the boundary condition at the
center of the pipe, equation (12), the boundary con-
dition at the inlet of the pipe, equation (11), is used for
the boundary condition outside the thermal boundary
layer. That is

0, w0, 1) = 1. (18)
3. STEADY-STATE CASE

For the steady-state case, equations (15), (17) and
(18) become

0
o
+ Br& (1 —&mm+!

3, weir) 0©
(=t e=5 8 [1=0=nr" T} o

_% _ —- m-+ 1 a_@

=3l-a-arg (19)
0K, 0 =0 (20)
O, o)=L @2n

This is a boundary-layer heat transfer problem. The
local similarity method [11-14] can be applied to
obtain the approximate solution. The method is the
deleting of the term containing 6©/0¢ on the right-
hand side of equation (19) and considering & as a
prescribed parameter. Notice that when £ is small, the
term on the right-hand side of {19)is also small and can
be omitted. The simplified equation from (19) is an
ordinary differential equation which forms a two-point
boundary-value problem with equations (20) and (21)
as boundary conditions. Numerical solutions are
obtained by a fixed step-size fourth-order Runge-
Kutta-Gill integration scheme along with a
conventional shooting method [15]. A description of
the numerical method was given in [16].

The heat transfer coefficient h is defined as

WT,~Ty) =k or

or

where T, is the bulk temperature. Since the local
similarity solution is only applied to small axial
distance, T, can be represented by the inlet tempera-
ture T Hence the local Nusselt number, Nu, becomes

(22)

r=R

2hR o0
Nu=""—=2"12 23)
k N {p=o
The Graetz number, Gz, is defined as
Gz = «Q— (24)
ox
where Q is the volumetric flow rate. Thus
I (m+1
Gz = ——— )&, 25
z 2 (m+3>§ 25)

Therefore, normalized axial distance is inverse pro-
portional to the 1/3 power of the Graetz number.

Figure 1 shows the comparison of the local simi-
larity solution with the extended Leveque solution [3,
57. The agreement between these solutions is very good
particularly for large Graetz numbers. The matchingis
excellent for large Brinkman number which cor-
responds to significant viscous dissipation. It is thus
concluded that both the local similarity solution and
the extended Leveque solution are valid for large
Graetz number. Typical temperature profiles near the
thermal inlet of a pipe are shownin Fig. 2forn = 1 and
Br = 0. As expected, the thickness of thermal boun-
dary layer increases with a decrease of the Graetz
number. In the next section, the idea of local similarity
is extended to unsteady-state heat transfer.

4. THE INSTANT-LOCAL SIMILARITY METHOD

Deleting the term on the right-hand side of equation
(15) we have the local similarity approximation of the
unsteady-state heat transfer for small normalized
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Fi6. 2. Typical temperature profiles near the thermal entrance of a pipe, n = 1, Br = 0.

axial distance. In order to find the unsteady heat
transfer solution, a further coordinate transformed
from (¢, 5, 1) to (£, {, t) is made by defining

{=R~r)(at)'? =yl 2 (26)

Hence, equation (15), with the term on the right-hand
side deleted by the local similarity approximation,
becomes

2@

_aéz_i_ — {(1 _.CI/Z C)wl .El,fz _%f—i& [1 ”(1 _Tuz C)nH— 1]

1,00
X TC-—EC}‘é?

The transformed boundary conditions are
0, 0,7)=0 (28)
O, w,1)=1 (29)

For small 7 and (or) small 6@/6r, the term ©(0@/dt) on
the right-hand side of equation (27) can be omitted, in
a similar manner like the local similarity method, to
simplify the partial differential equation into an
ordinary differential equation. Thisis called the instant
similarity method proposed by the authors. The
successive use of the local similarity method and the
instant similarity method is thus called the instant-
local similarity method. Numerical solution is ob-
tained by considering & and t as prescribed parameters

20
gty O
+ Bro(1 -2 # 0 =1 P 27 in the numerical integration of the simplified equation
200 T T T | R U R T
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50
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T
FiG. 3. Effect of Graetz number on transient heat transfer of pipe, # = 1, Br = 0.——— designates steady-state

value.
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FIG. 4. Effect of Brinkman number on transient heat transfer of pipe, n = 1, Gz = 1000. - — - designates

steady-state value.

system by the numerical method mentioned above.
Expressing the heat transfer rate in terms of local
Nusselt number

_WR _
L

The effects of Graetz number, Brinkman number and
flow index on the local Nusselt number are shown in
Figs. 3-5, respectively. It is illustrated that the
unsteady-state solutions approach to the correspond-
ing steady-state values asymptotically. The steady-
state values are obtained from extended Leveque
solutionsin [4, 5]. Development of temperature profile
following a step change in surface temperature of pipe
is shown in Fig. 6. The profile approaches to the steady
state layer in a small normalized time.

20
-1/2
Nu 2 Fa (&0, 1) (30)

5. PLATE SLIT CASE

The fully-developed steady flow of power-law non-
Newtonian fluids in a plate slit between two parallel
plates separate of height 2H is described by the velocity

profile
y m+1
= 1— —_
ool ()

where u is the velocity in the axial coordinate x, and yis
the normal coordinate from the center of the plate slit.
The unsteady-state heat transfer equation of power-
law fluids with constant physical properties and
neglecting the heat conduction in the axial coordinate

18
n—1 du 2
&)

(32)

(3D

oT | &'T

oT du
ey + peplt = = kW +

dy
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Fic. 5. Effect of flow index on transient heat transfer of pipe, Br = 0, Gz = 1000.— — —designates steady-state
value.



1536

Hs1A0-TsuNG LiIN and YEN-PING SHIH

FiG. 6. Development of temperature profile of pipe, n = 0.5, Br = 0, Gz = 1000.

where the last term of (32) represents the viscous
dissipation. The initial and boundary conditions are
assumed as

T(x,y,0)= T, (33)
T©,y.t)=T, (34)
a—T(x, 0,1)=0 (35)
dy
T(x, H, t) = To+(T,— To) L(t). (36)

Introducing the dimensionless groups and variables

=y
Y—H
_ oax
T HU
ot
T= (37)
T-T
0= :
TO_Ts
KH? uo N
— n+ 1 “max
w5
we have
00 11,00 %0 "
o —_y"h2 T = 4 Bry™ 38
o AT ey =t (38)
X, Y, 0)=1 (39)
00, Y, 1)=1 (40)
20
(X,0,1)=0 41
6Y( T) 41)

01X, 1,1)=0. 42)

To facilitate the analysis by boundary layer ap-
proach, the coordinate transformation of (14) is used.
Equation (38) becomes

30 3

- m+ 1 a®
W+ if "= —&ny ]'15’7

+ Bre?(1-&nmtt — 526—9
ot

15,0
ér’)m+ 1] g

4
with boundary conditions given by equations
(16)-(18).

The local similarity solution for the steady-state
heat transfer is obtained by omitting the term on the
right-hand side of (43) and the term containing the
partial derivative with respect to time, 0@/dt. For a
wide range of the Graetz number, 100-10000, the
matching of the local similarity solution and the
extended Leveque solution is found to be excellent as
shown in Fig. 7.

Using the coordinate transformation of (26), equa-
tion (43) becomes

)
o2

3
==~ (43)

E -3 {1 __pli2 pym+1 l @
+{2§ [1-(1—1'2) ]TC+2C}@C

(542
+ Bri(l =<2yt =1 —
ot

(44)
where the term on the right-hand side of (43) has been
omitted. The instant-loca! similarity solution is ob-
tained from equation (44) and the boundary con-
ditions of equations (28) and (29) by deleting the term
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Fi1G. 7. Comparison of steady-state heat transfer for plate slit flow, n = 1, Br = 0.

{(0®/07) on the right-hand side of (44) and considering
T and ¢ as prescribed parameters in the numerical
integration of the resultant two-point boundary-value
problem.

Defining the heat transfer coefficient 4 as

oT
WT—To) = k— 43)
ay iy=H
the local Nusselt number
hH
Nu = g—-k—- {46)

is then expressed by (23) and (30), respectively, for
steady-state and unsteady-state cases. In plate slit case,
the Graetz number

2H Q

Gz = —
woax

47

where Q is the volumetric flow rate, is related to the

transformed axial distance £ by

Gz = 18(Tﬂ)5~3.

m+2 “8)

The comparison of the local similarity solution with
the extended Leveque solution [4, 5] is shown in Fig. 7.
The agreement is excellent. Figure 8 shows the effect of
flow index on the local Nusselt number. Like the case
of pipe flow, the heat transfer rates for large values of
normalized time and for steady-state increase as the
flow index n decreases.

6. CONCLUSION

For small normalized distance it is known that the
Graetz problem of the entrance heat transfer in pipes
can be converted into boundary layer problem. In this
paper, the local similarity method is applied to the
analysis of the steady-state Graetz problems for the
heat transfer in the entrance region for fully-developed

20 T 1 1
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gl i
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Fic. 8. Effect of flow index on transient heat transfer of plate slit, Br = 0, Gz = 1000. - - - designates steady-
state flow.
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laminar flow of power-law non-Newtonian fluids in
pipes and plate slits. Heat generation from viscous
dissipation is taken into account and is represented by
the Brinkman number. For the analysis of the un-
steady-state Graetz problems, a novel method namely
instant-local similarity method is used. The steady-
state results agree with the extended Leveque solutions
very well, while the unsteady-state heat transfer rates
approach the steady-state values asymptotically. Since
the normalized time from the transient up to steady
state is only of order 1071, the instant-local similarity
method gives results of high accuracy and is very useful
for the study of the unsteady Graetz problems.
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TRANSFERT THERMIQUE VARIABLE A LENTREE DE CONDUITES ET DE FENTES
PLANES POUR DES FLUIDES A LOI PUISSANCE

Résiimé—On propose une méthode de similarité instantanée et locale pour analyser les problémes de Graetz
variables. On ¢tudie le transfert thermique variable pour un écoulement laminaire de fluides non-newtoniens
4 loi puissance dans la région d'entrée thermiques des conduites et des fentes planes, en considérant la
dissipation visqueuse. Seuls sont considérés les grands nombres de Graetz (faible distance axiale normée)et le
temps normé jusqu’a la solution permanente est de 'ordre de 10~ ! ; ’approche par la similarité instantanée et
locale donne des résultats trés précis. Les effets de I'indice de I'écoulement de la dissipation visqueuse et du
nombre de Graetz sur le flux de chaleur sont illustrés par des solutions numeériques. Les problémes
permanents correspondants sont étudiés par la méthode de similarité locale dont les solutions s’accordent
trés bien avec les solutions complétes de Lévéque, particuliérement pour des grands nombres de Graetz et de

Brinkman.

INSTATIONARER WARMEUBERGANG IM EINLAUFGEBIET VON ROHREN
UND PLATTENSPALTEN BEI NICHT-NEWTON'SCHEN FLUIDEN

Zusammenfassung—Es wird eine zeitlich-lokale Ahnlichkeitsmethode verwendet, um das instationire
Graetz-Problem zu untersuchen. Behandelt wird der instationdre Wirmeiibergang bei voll ausgebildeter
laminarer Strémung von viskosen nicht-newton’schen Fluiden im thermischen Einlaufgebeit von Rohren
und ebenen Spalten unter Beriicksichtigung der viskosen Dissipation. Bei Untersuchungen des
instationiren thermischen Einlaufs werden nur grofle Graetz—Zahlen (kleiner normierter axialer Abstand)
betrachtet, wobei die normierte Zeit vom Ubergangsbereich bis zum stationéren Zustand die GroBenord-
nung von 10~ ! hat. Fiir diesen Bereich liefert die zeitlich-lokale Ahnlichkeitstheorie Ergebnisse von guter
Genauigkeit. Die Einfliisse von Stromungsindex, viskoser Dissipation und Graetz-Zah! auf den Wirme-
iibergang werden anhand numerischer Losungen gezeigt. Die entsprechenden stationdren Graetz-
Probleme werden ebenfalls mit der zeitlich-lokalen Ahnlichkeitsmethode behandelt, wobei die Ergebnisse
sehr gut mit den erweiterten Leveque-Ldsungen, besonders fiir grofle Graetz— und Brinkman-Zahlen,
iibereinstimmen.
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PACYET HECTALIMOHAPHOI'O TEINJIOOBMEHA HA TEIIJIOBOM YUYACTKE
B TPYBAX W TUIOCKUX HENSAX AN CTENEHHBIX XUJAKOCTEHA

Annotauns — [1peUioxKeH METOA NIOKaILHOH aBTOMOIENBHOCTH /LIS PELUEHHS HECTALHOHAPHBIX 3anad
Ipetua. Uccnenyetcs HectauMOHapHBiif TEMJIONEPEHOC NPH MONHGCTbIO DPa3BHTOM JIAMMHAPDHOM
TEYEHHH CTENCHHBIX HEHbIOTOHOBCKHX XHIKOCTEH Ha HarpeBacMOM Ha4aJbHOM Y4acTKe Tpy6 H
NJIOCKHX IleNeH C yd4eTOM BA3KO# AHccHnmauuH. PeulenHe HecTanMOHapHBIX 3ajay TenjonepeHoca
paccMaTpHBAETCA TONMBKO 1A Oonbiiux 3HaueHHMR uyucia I'perua (HEGONBIUMX HOPMHPOBaHHBIX
PacCTOsHUMA OT BX0Ia) H HOPMHPOBAHHBIX MPOMEXKYTKOB BPEMEHH OT NEPEXOAHOTO A0 CTALUMOHAPHOTO
cocTosHua nopaaka 107 '. T[Ipu Takux yCIOBHSX METOR JIOKAJbHOH aBTOMOMENLHOCTH NAET OYeHb
TO4Hble pe3y/ibTaThl. Ha npuMepe YHCHCHHBIX PELLEHHUH MOKA3aHO BIMAHHE HHOEKCA HEHbIOTOHOBOCTH,
BS3KOH IMCCHNAUMM M 4Hcna [peTiia Ha MHTEHCHBHOCTb TersioofMmeHa. MeToOoOM JIoKa/ibHO# aBTO-
MOJEeNIbHOCTH MCC/IEAYIOTCS COOTBETCTBYIOILME CTallMOHapHbIe 3anaun 'petua. PesynnTaTel pelnenus
XOpOILO COTNACYIOTCst ¢ 0600IEHHBIME pellicHHAMH Jleaeka B 0COGEHHOCTH NpH HeGOMBIUMX YKCIAX
I'petua u Bpunkmana.
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